发布于: iPhone转发:0回复:0喜欢:1

DRAM,走向3D

半导体行业观察 2024-06-06 09:19
SK海力士:聚焦3D DRAM新一代沟道材料
SK海力士也在积极研发3D DRAM。
SK海力士表示,3D DRAM可以解决带宽和延迟方面的挑战,并已在2021年开始研究。
据韩媒Business Korea去年的报道,SK海力士提出了将IGZO作为3D DRAM的新一代沟道材料。
IGZO是由铟、镓、氧化锌组成的金属氧化物材料,大致分为非晶质IGZO和晶化IGZO。其中,晶化IGZO是一种物理、化学稳定的材料,在半导体工艺过程中可保持均匀的结构,SK海力士研究的正是这种材料,其最大优势是其低待机功耗,这种特点适合要求长续航时间的DRAM芯晶体管,改善DRAM的刷新特性。
据透露,SK海力士将会在今年披露3D DRAM电气特性的相关细节,到时候公司将会明确3D DRAM的发展方向。
美光:专利数量遥遥领先
3D DRAM领域的技术竞争正在加剧。
据TechInsights称,美光在2019年就开始了3D DRAM的研究工作。截止2022年8月,美光已获得了30多项3D DRAM专利。相比之下,美光专利数量是三星和SK海力士这两家韩国芯片制造商的两三倍。
在2022年9月接受采访的时候,美光公司确认正在探索3D DARM的方案。
美光表示,3D DRAM正在被讨论作为继续扩展DRAM的下一步。为了实现3D DRAM,整个行业都在积极研究,从制造设备的开发、先进的ALD、选择性气相沉积、选择性蚀刻,再到架构的讨论。
美光的3D DRAM方案,网上并没有看到太多介绍。不过据Yole强调,美光提交了与三星电子不同的3D DRAM专利申请。美光的方法是在不放置Cell的情况下改变晶体管和电容器的形状。
除此以外,Applied Materials和Lam Research等全球半导体设备制造商也开始开发与3D DRAM相关的解决方案。
东京工业大学:BBCube 3D DRAM堆栈技术
日本东京工业大学研究团队提出了一种名为BBCube的3D DRAM堆栈设计技术,该技术可以让处理单元和DRAM之间更好地集成。
该团队使用创新的堆叠结构,其中处理器管芯位于多层DRAM之上,所有组件通过硅通孔(TSV)互连,BBCube 3D最显著的方面是实现了处理单元和DRAM之间的三维而非二维连接,有助于实现低寄生电容和低电阻,在各方面改善了该器件的电气性能。
IGZO——3D DRAM的合适候选者
除此之外,国内多家研究机构甚至企业都在投入到3D DRAM的研发当中。例如中科院微电子所就曾经撰文表示,针对平面结构IGZO-DRAM的密度问题,微电子所微电子重点实验室刘明院士团队在垂直环形沟道结构(CAA)IGZO FET的基础上,研究了第二层器件堆叠前层间介质层工艺的影响,验证了CAA IGZO FET在2T0C DARM应用中的可靠性。
实际上,在无电容式IGZO技术方面,早在2004年,IGZO氧化物被东京工业大学的细野教授发现并发表在《自然》杂志上。在2020 IEDM上,IMEC展示了无电容器3D DRAM,后续取得一系列进展。
业界认为,HBM的出现开启了DRAM 3D化发展道路,无电容IGZO-DRAM也成为了实现高密度3D DRAM的合适候选者。但很多技术现还在探索中,最终能否使DRAM实现3D堆叠,开始新的技术方向,还暂未可知。
总的来说,3D DRAM技术前景广阔,各大存储厂商都非常重视3D DRAM的研发,并将其视为未来内存市场的重要发展方向,以满足不断增长的对高容量、高性能、小存储单元尺寸以及低功耗存储设备的需求。#存储芯片# #HBM#DRAM,走向3D<br/>半DRAM,走向3D<br/>半DRAM,走向3D<br/>半DRAM,走向3D<br/>半DRAM,走向3D<br/>半DRAM,走向3D<br/>半