如何聪明的配置Smart Beta?

TUSHARE  金融与技术学习兴趣小组 

翻译整理 | 404

本期编辑 | Little monster 

译者简介:上海财经大学数量经济学硕士,兴趣方向为权益量化(多因子、指数等)。

作者:Nicolas Rabener

smart beta ETF的出现简化了投资,使得他们可以不仅仅满足于平缓的beta。但同时,经历过过去十年的表现不佳,也使那些配置价值ETF的投资者意识到,smart beta并不总是优于beta。

但好在投资者有各种各样的smart beta可以选,这些smart beta都可以用来追求高收益。一旦投资者决定构建一个多因子组合,就会面临一个问题:如何聪明的配置策略?

本文我们会研究美国股票市场上smart beta资产配置策略的情况。

【结论】

① 大多数smart beta策略自1990年以来跑赢市场,但最近几年几乎没有。

② 多样化的策略降低了绩差风险。

③ 大量用于多因子组合的资产配置模型,最终得到了相似的结果。

01 

方法论

我们使用美国市场上的价值、规模、动量、低波动、质量、成长和红利七个因子构建组合。对因子排序后取前30%的股票作为多头方,并按市值加权计算组合收益。因子定义与学术文献一致,只保留规模小于10亿美元的股票。组合月频调仓,交易费率10bp。

需要说明的是,由于价格数据获取的限制,我们并没有使用smart beta ETF的真实收益数据。第一批成长、价值ETF在2000年推出,而低波动smart beta ETF仅在2009年有数据。但我们最近的研究发现,如果将理论的多头因子组合基准化为smart beta ETF,跟踪误差相对较小。详见报告《Benchmarking Smart Beta ETFs》【1】

02 

smart beta 策略在美国市场的表现

几乎所有7个smart beta策略从1990年至今跑赢市场,除了低波动和质量因子。但这些策略在不同时间段的表现差异很大,尤其是在2000年的科技泡沫期,动量和成长显著跑赢其他策略。

图片来源:FactorResearch

挑剔的人可能会质疑这些结论,因为绝大多数因子跑赢市场也使不同寻常的。值得注意的是,分析的起点对于回报计算有很大影响,如果我们从更晚的时间点开始计算,结果会有明显变化:如果从2000年开始算,只有半数因子显著优于市场,如果从2010年算,七个因子中只有两个优于市场。

各个因子回报的变化凸显了因子切换的频繁,也让投资者有动力去使用更多的因子,以获取高一致性的超额回报。

图片来源:FactorResearch

03

smart beta 策略配置模型

投资者可能会考虑对所有smart beta策略进行简单等权配置或者使用更复杂的配置模型。我们在月度再平衡条件下,分别评价这些模型。

【动量(总收益)】使用过去12个月的数据计算各个smartbeta策略的总收益,每次选7个策略中表现最好的三个并进行等权配置。

【动量(夏普)】使用过去12个月的数据计算各个smartbeta策略的夏普,取表现最好的三个策略,等权配置。

【等权】7种策略等权分配。

【风险平价】每种策略的权重使用过去12个月的波动率倒数占比确定,因此波动率越高,配置权重越低。

我们发现所有多因子smart beta组合自1991年以来都跑赢市场,这表明大部分策略都有独立的异常回报。两种动量驱动的组合获得了最高的回报,而等权和风险平价组合表现较差并且几乎一致。这些策略在2000年左右有巨大的差异,这源于动量驱动的策略通过动量、成长、质量因子上的暴露配置了高科技股票。

图片来源:FactorResearch

为什么等权和风险平价组合表现没有显著差异,这是一个值得探究的问题。后者是一个成熟的大类资产配置框架,往往呈现出低或负相关性并具有独特的风险特征。相比之下,所有smart beta策略表示的多头权益组合,都具有高相关性和类似的波动率特征,此时使用这种方法配置和等权不会有显著差异。

为了减小初始点的影响,我们分别统计了不同时间段的收益。我们发现没有一个资产配置模型能始终优于其他模型。两种动量驱动的模型相比等权和风险平价模型有略高的回报,但我们必须警惕这些结果对于回测区间、因子池及其他假设是非常敏感的,很容易过度解释。

图片来源:FactorResearch

最后,我们把视角转向风险调整回报,发现了不一样的结果,这再次表明没有最优的smart beta配置模型。以上分析表明smart beta使得投资者有比市场更多高的风险收益比而几乎无视所用的模型。

各种模型换手率上有所差异,这主要是因为动量策略总是根据策略的表现调入调出smart beta策略,而等权和风险平价模型几乎不增加或减小配置。

图片来源:FactorResearch

04

总结

本文比较了美国市场上四种具有相对可比风险回报比的smart beta资产配置策略,这使得做选择变得困难。虽然动量组合的换手率非常高,但如果投资者不了解换手率情况,选择可能会基于个人偏好。

值得一提的是,过去十年,大多数smart beta策略的超额收益似很低甚至是负的,这就引出了一个问题,市场是否已经非常有效以至于策略无法获取异常回报?这里有两个相互矛盾的论点:

① 2000年以前的结果表明,由于交易成本假设太低,超额回报很高。从1998-2018,我们设定了10bp的交易费率,这并不现实。但这一论点对部分smart beta策略是有偏的,比如低年化换手率的质量因子,交易成本没有重要影响。

② 1990年以后市场很自然的更加有效了,但很难在具有低换手率特征的因子投资上量化这些有效性的增加。我们可以度量因子的估值spread,即多空头的估值差。当前价值因子的估值spread跟2000年是一样便宜,这意味着smart beta的异常回报没有被侵蚀了。

END

更多内容请关注“挖地兔”公众号。

【参考链接】

网页链接【1】

网页链接

【扩展阅读】大佬告诉你如何成为一名Quant他才是有史以来最伟大的因子组合投资者年化1000%?!什么才是回测的正确姿势之系列一官方股民调查数据,看看有没有猜中你利用python进行蒙特卡罗模拟利用Python玩转PDF,简单实用你真的懂线程吗?史上最全Python线程解析

雪球转发:0回复:1喜欢:3

全部评论

天外飞钳05-14 12:30

中国散户多,现在smart策略应该还很有效